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Self-consistent generalized Langevin equation for colloid dynamics
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We present a general self-consistent theory of colloid dynamics which, for a system without hydrodynamic
interactions, allows us to calculateF(k,t), and its self-diffusion counterpartFS(k,t), given the effective
interaction pair potentialu(r ) between colloidal particles, and the corresponding equilibrium static structural
properties. This theory is build upon the exact results forF(k,t) andFS(k,t) in terms of a hierarchy of memory
functions, derived from the application of the generalized Langevin equation formalism, plus the proposal of
Vineyard-like connections betweenF(k,t) and FS(k,t) through their respective memory functions, and a
closure relation between these memory functions and the time-dependent friction functionDz(t). As an
illustrative application, we present and analyze a selection of numerical results of this theory in the short- and
intermediate-time regimes, as applied to a two-dimensional repulsive Yukawa Brownian fluid. For this system,
we find that our theory accurately describes the dynamic properties contained inF(k,t) in a wide range of
conditions, including strongly correlated systems, at the longest times available from our computer simulations.
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I. INTRODUCTION

The description of the dynamic properties of colloid
suspensions is an important experimental and theore
problem of current interest. Over the years, the developm
of a fully satisfactory microscopic description of colloid d
namics has proved to be a challenging task@1,2#. One would
like to see a general and systematic theory, firmly groun
on well-established fundamental principles, involving only
few physically transparent assumptions and approximatio
and requiring, as the only input, well-defined microsco
parameters. From a more practical perspective, one w
also expect such a theory to be simple enough to allow
nonspecialist to perform extensive applications to the in
pretation of experimental measurements in a variety of s
tems and conditions. Of course, all these boundary co
tions are virtually impossible to meet by a single gra
theoretical formalism. As a result, what we have is a rat
diverse array of approaches, formal derivations, exact
approximate results for various limiting conditions a
cases, and a few effective or physically intuitive shortcuts
the most difficult aspects of this complex many-body pro
lem @3–15#. Taken together, all these theoretical develo
ments, mostly produced within the last 20 years, have p
vided a partial but sound theoretical interpretation of a la
number of experimental facts. These involve important
fects present in everyday colloidal suspensions, such
charge effects in electrostatically stabilized suspensions
the effects of direct and hydrodynamic interactions in ha
sphere-like suspensions. We must say, however, that mo
the quantitative tests of the theory have been related, so
to the description ofself- or tracer-diffusion phenomena, in
which one measures averaged properties of the Brow
motion of individual particles. In contrast, incollective-
diffusion experiments one measures the relaxation of the
1063-651X/2001/64~6!/066114~11!/$20.00 64 0661
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cal concentration fluctuations@1#. These are governed b
some form of generalized diffusion coefficient, althou
what is actually measured is the van Hove functionG(r ,t) of
the Brownian fluid, or its Fourier transform, the intermedia
scattering functionF(k,t) @1,17,18#. This function contains,
in principle, all the dynamic information of the equilibrium
suspension. Thus, the development of conceptually clear,
quantitatively accurate, statistical mechanical theories is
quired for the fundamental understanding of this import
collective-diffusion property. The present work is aimed
the development of one such theory.

Thus, in this paper we present a general self-consis
theoretical scheme that allows us to calculateF(k,t) and its
self-diffusion counterpartFS(k,t), given the effective inter-
action pair potentialu(r ) between colloidal particles, and th
corresponding equilibrium static structural properties@such
as, the static structure factorS(k) or the radial distribution
function g(r )#. In the present discussion we shall have
mind a monodisperse colloidal suspension in the absenc
hydrodynamic interactions, since our present aim is only
illustrate the general procedure employed to construct su
self-consistent scheme. Thus, the emphasis in this paper
the conceptual basis of the approximations introduced in
theory, rather than on the details of its application to mo
complex systems.

Let us mention that the theory presented here is certa
not the only proposal available of a fully self-consiste
scheme for the collective and self-dynamics of colloidal s
pensions. In fact, as early as in 1983, Hess and Klein@4#
proposed the translation to colloids of the mode-coupl
self-consistent theory of molecular liquids@19,20#. Although
their proposal included an initial version of a fully sel
consistent scheme for colloidal systems, only until recen
extensive calculations based on such theory were reporte
the literature@13#. More recently, Na¨gele and coworkers
©2001 The American Physical Society14-1
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have developed a more elaborate version of this mo
coupling theory specifically devised to deal with colloid
liquids @14#. The resulting self-consistent scheme has b
extended and applied in several interesting directions@15#,
although only until recently the level of its quantitative a
curacy has been documented@15,16#. Our present theory
shares with such proposal a number of important featu
such as, the prediction of the ideal glass transition@20# in a
monodisperse system, and the possibility of extension
more complex conditions. This is a consequence of the s
larity in the mathematical structure of the resulting se
consistent schemes. As we shall see below, however,
main difference of our proposal, with respect to the mo
coupling approach, lies on the conceptual framework up
which our theory is built.

Our theory is explicitly based on the formalization of tw
physically intuitive notions, namely, that collective diffusio
should be related in a simple manner to self-diffusion, a
that space-dependent self-diffusion, in its turn, should be
lated in a simple manner to the mean squared displacem
~or otherk-independent self-diffusion property!. The devel-
opment of our theory will involve four distinct fundament
steps. The first of them consists of the derivation of the m
general and exact expressions forF(k,z) and FS(k,z) in
terms of a hierarchy of memory functions. The gene
method ~i.e., the generalized Langevin equation approa
@7,21#! employed to derive such exact expressions, alo
with the most general results, has been explained and i
trated in a recent work@22#. The second step consists of th
formalization of the notion that collective dynamics shou
somehow be simply related to self-dynamics. Vineyard’s
proximation @23# is a simple ~although qualitatively and
quantitatively rather primitive@17,18#! implementation of
this idea. This aspect has also been discussed separ
thus, in Ref.@24# the general expressions forF(k,z) and
FS(k,z) in terms of higher-order memory functions ha
been employed to propose and test a hierarchy of Viney
like approximations. Adopting any of these approximatio
reduces the problem of colloid dynamics to the determi
tion of FS(k,z) or any of its memory functions. The thir
basic step of the present theory consists of the proposa
the determination ofFS(k,t). This step will be based on th
physically intuitive expectation that space-dependent s
diffusion @represented byFS(k,t)# should be simply related
to the properties that characterize the Brownian motion
individual particles@1,4#, just like in the Gaussian approx
mation, which expressesFS(k,t) in terms of the mean-
squared displacementW(t) as FS(k,t)5e2k2W(t). In the
present paper we propose an analogous connection, but a
level of the memory functions ofFS(k,t) and W(t). The
memory function ofW(t) is the so-called time-depende
friction functionDz(t). As a final step in the development o
our theory, we shall rely on the results of the generaliz
Langevin equation formalism for tracer diffusion@7#, which
leads to an expression forDz(t) in terms of F(k,t) and
FS(k,t). Such closure relation finally determines our ful
self-consistent theory of colloid dynamics.

In the following section we summarize the main results
Refs.@22# and @24#, which contain the elements involved i
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the first two steps referred to above. These are, respectiv
the general memory-function expressions forF(k,t) and
FS(k,t), and the Vineyard-like relationships between the
two properties. In Sec. III we describe the remaining steps
the development of our theory, which finally lead to our ful
self-consistent scheme. In Sec. IV we present and analy
selection of illustrative results of the numerical solution
this theory in the short and intermediate times, as applie
a specific model system, namely, a two-dimensional rep
sive Yukawa Brownian fluid. For this system we also pe
form Brownian dynamics computer simulations, with th
idea of calibrating the qualitative and quantitative accura
of this theory in the time regimes referred to above. Sect
V summarizes the main conclusions of this work, and d
cusses the potential applications of the theory develo
here.

II. GENERAL RESULTS AND VINEYARD-LIKE
APPROXIMATIONS

The intermediate scattering functionF(k,t) of a colloidal
fluid contains the most relevant information on the dynam
properties of such systems@1#. This function is the spatia
Fourier transform of the van Hove functionG(r ,t) that mea-
sures the spatial and temporal correlations of the fluctuat
dn(r ,t)[n(r ,t)2n of the local concentrationn(r ,t) at po-
sition r and timet around its equilibrium bulk averagen, i.e.,
G(ur2r 8u;t)[^dn(r ,t)dn(r 8,0)&, where the angular brack
ets indicate average over the equilibrium ensemble@3,4#. A
closely related property is the so-calledself-intermediate
scattering functionFS(k,t). This is defined asFS(k,t)
[^eik•DR(t)&, whereDR(t) is the displacement at timet of
any of the particles of the Brownian fluid.

In previous related work@22,25#, the generalized Lange
vin equation~GLE! approach, and the concept of the co
traction of the description@7,21#, was employed to derive the
most general time-evolution equation for the fluctuatio
dn(r ,t) of a monodisperse colloidal suspension in the a
sence of hydrodynamic interactions. In such derivation,
assumed underlying microscopicN-particle dynamics was
provided by the many-particle Langevin equation@1#. As a
result, expressions are derived forF(k,t) @or its Laplace
transformF(k,z)# in terms of a hierarchy of memory func
tions, and of static structural properties of the Brownian flu
@22#. In these expressions, the Brownian relaxation timetB

[M /z0 ~or the corresponding frecuencyzB[ tB
21) appears,

whereM andz0 are, respectively, the mass and the solve
friction coefficient of each particle in the suspension. In t
absence of friction (z0→0), these expressions correspond
those of a simple atomic liquid@18#. In the presence of fric-
tion, and in order to ‘‘tune’’ these expressions to the tim
regime normally probed by dynamic light scattering expe
ments, or by Brownian dynamics simulations, the limitt
@tB , or z!zB , must be taken. Taking this, so-called ‘‘ove
damping’’ limit @4#, requires a careful analysis, which wa
the main subject of Ref.@22#. As a result, one gets the mo
general expression forF(k,t) that describes the dynamics o
the suspension in the diffusive regime~i.e., for times t
@tB). The resulting ‘‘overdamped’’ expressions forF(k,z),
4-2
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SELF-CONSISTENT GENERALIZED LANGEVIN . . . PHYSICAL REVIEW E64 066114
along with the corresponding result forFS(k,z), constitute
the starting point of the present discussion.

According to Ref.@22#, the most general expression fo
F(k,z) in the diffusive regime can be written as

F~k,z!5
S~k!

z1
k2D0S21~k!

11C~k,z!

~2.1!

with the memory functionC(k,z) given by

C~k,z!5
k2D0x~k!

z1x21~k!L0~k!1x21~k!DL~k,z!
, ~2.2!

whereD05kBT/z0 is the free-diffusion coefficient of eac
particle (kBT being the thermal energy!, S(k) the static
structure factor, andx(k) the static correlation function o
the fluctuations of the configurational component of t
stress tensor of the Brownian fluid~Notice that in Ref.@22#,
x(k) andDL(k,z) carry a subindex ‘‘UU,’’ which we shall
drop systematically in this paper!. x(k) andL0(k) are static
properties that can be written@see Eqs.~A6! and~A7! of the
Appendix, respectively# in terms of the two- and three
particle correlation functionsg(r ) andg(3)(r ,r 8), which are
assumed to be known. Thus, the only unknown in the exp
sion for F(k,z) in Eqs.~2.1! and ~2.2! is the memory func-
tion DL(k,z).

The corresponding results forFS(k,z) can be written as

FS~k,z!5
1

z1
k2D0

11CS~k,z!

, ~2.3!

where

CS~k,z!5
k2D0xS~k!

z1xS
21~k!LS

0~k!1xS
21DLS~k,z!

~2.4!

with xS(k) and LS
0(k) also defined in the Appendix@Eqs.

~A8! and ~A9!, respectively#.
Let us notice that the general expressions in Eqs.~2.1! and

~2.3! for F(k,z) andFS(k,z) in terms of the memory func
tions C(k,z) andCS(k,z) can also be derived using altern
tive general theoretical frameworks. Thus, starting from
N-particle Smoluchowski dynamics, and employing proje
tion operator techniques, Ackerson@3# derived a time-
evolution equation forF(k,z) and FS(k,z) which can be
written as our Eqs.~2.1! and~2.3! above, provided we iden
tify Ackerson’s memory function M (k,z) with
k2D0C(k,z)/@11C(k,z)#, and similarly for self-diffusion.
Thus, all the relevant limiting properties ofF(k,t) and
FS(k,t) ~long times, small wave vectors, etc.! discussed al-
ready by Ackerson, will be inherited by any approxima
theory based on the general results in Eqs.~2.1! and~2.3!. In
particular, on the basis of these results we expect thatF(k,t)
and FS(k,t) will decay exponentially at short times for a
wave vectors, and at small wave vectors for all times, w
decay constantsk2D0S21(k) and k2D0, respectively. Also,
06611
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for all wave vectors,F(k,t) and FS(k,t) are expected to
decay exponentially for asymptotically long times, with d
cay constantsk2D0S21(k)/@11C(k,z50)# and k2D0 /@1
1CS(k,z50)#, respectively~some of these general limiting
behaviors are illustrated in Fig. 4 below!. We should also
mention that several authors, most recently Na¨gele and co-
workers, have rederived Ackerson’s results also using
projection operator formalism with theN-particle Smolu-
chowski dynamics. The basic general results, however,
precisely Eqs.~2.1! and ~2.3! above, with C(k,z) and
CS(k,z) referred to as the normalized irreducible memo
functions. The starting point of the approximate theory d
veloped here are indeed these general results, but com
mented with the additional information contained in Eq
~2.2! and ~2.4!, which express the irreducible memory fun
tions C(k,z) and CS(k,z) in terms of the still higher-order
memory functionsDL(k,z) andDLS(k,z).

The second element in the construction of our se
consistent theory is the proposal of a higher-order Vineya
like relationship betweenF(k,t) andFS(k,t). Vineyard’s ap-
proximation consists of the simplest of such relation
namely,F(k,t) is approximated directly byFS(k,t)S(k). In
Ref. @24#, we studied alternative, more sophisticated mann
to refer collective dynamics to self-diffusion. Rather th
relatingF(k,t) directly to FS(k,t), we proposed to approxi
mate a memory function ofF(k,t) by the corresponding
memory function ofFS(k,t).

As an illustration, consider Eqs.~2.1!–~2.4!. This suggests
to relate F(k,z) to FS(k,z) through their higher-order
memory functionsDL(k,z) and DLS(k,z). The detailed
manner in which this is done turns out to be important, a
was discussed in Ref.@24#. For our present purpose, how
ever, it is sufficient to say that the most accurate and fun
mental proposal for a Vineyard-like connection betwe
F(k,z) andFS(k,z) is defined by the following approxima
tion:

DL~k,z!

L0~k!
5

DLS~k,z!

LS
0~k!

. ~2.5!

Taken together with Eqs.~2.1!–~2.4!, this equation de-
fines an approximate scheme that allows us to exp
F(k,z) and FS(k,z) in terms of a single memory function
namely, DLS(k,z)/LS

0(k). As said above, this is the mos
accurate Vineyard-like approximation among the ones t
can be suggested from the exact results forF(k,z) and
FS(k,z) in Eqs.~2.1!–~2.4!. One reason for such accuracy
the fact that the use of the exact results in Eqs.~2.1!–~2.4!
guarantees that, independently of the value ofDL(k,z) and
DLS(k,z), the resulting expressions forF(k,t) and FS(k,t)
satisfy exactly the first three~short-time! moment conditions
@5,6#.

In practice, however, in this work we shall employ
Vineyard-like connection betweenF(k,z) and FS(k,z),
which is defined in terms of a simple connection between
memory functionC(k,z) andCS(k,z), but which happens to
be just as accurate as the most sophisticated proposal in
~2.5!. This Vineyard-like approximation also preserves t
4-3
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exact short-time limit up to ordert3 for F(k,t) andFS(k,t),
and is defined by the general results in Eqs.~2.1! and ~2.3!,
along with the following approximate relation@24#:

C~k,z!

CSEXP~k,z!
5

CS~k,z!

CS
SEXP~k,z!

, ~2.6!

whereCSEXP(k,z) and CS
SEXP(k,z) are given, respectively

by Eqs. ~2.2! and ~2.4! with DL(k,z)5DLS(k,z)50 @see
also Eqs. ~3.8! and ~3.9! below#. Just like the previous
higher-order Vineyard-like approximation, this scheme
fers both,F(k,z) andFS(k,z), through Eqs.~2.1!, ~2.3!, and
~2.6!, to the knowledge of a single memory function, name
CS(k,z). Thus, the remaining problem is to find a closu
relation for this system of equations, and our proposal
this follows in Sec. III.

III. CLOSURE RELATIONS AND SELF-CONSISTENT
DYNAMICS

Conceptually, what we did in the preceding section was
write down in concrete mathematical terms the intuitive e
pectation that collective dynamics must be closely related
self-diffusion dynamics. As indicated at the end of last s
tion, here we shall choose a particular proposal for suc
relationship. This proposal consists of the exact results
F(k,z) and FS(k,z) in terms of the memory function
C(k,z) and CS(k,z) in Eqs. ~2.1! and ~2.3!, along with the
approximation forC(k,z) in terms ofCS(k,z) given by Eq.
~2.6! above. To proceed, we need an independent clo
relation between these four unknown functions, and this
the subject of this section. Here, too, we look for a sim
physical notion that guides us, and this is the expectation
the k-dependent self-diffusion properties, represented
FS(k,z) or CS(k,z), should be related in a simple manner
the (k-independent! properties that describe the Brownia
motion of tagged particles. This notion is best illustrated
the well-known Gaussian approximation forFS(k,t), which
writes

FS~k,t !5e2k2W(t), ~3.1!

where W(t)5^(DR(t))2&/6 is the mean-squared displac
ment of a tagged particle. If we had an independent dete
nation ofW(t), then Eq.~3.1! provides a closed represent
tion of self-diffusion dynamics, and, through the results
the preceding section, we would also have an approxim
representation of collective dynamics.

Here, however, instead of the Gaussian approximat
we propose an alternative format for the approximate re
tionship between thek-dependent properties describing se
diffusion and thek-independent properties describing t
Brownian motion. For this, let us notice that in one particu
limit, the function CS(k,z) can be identified with a well-
defined property that is central to the description of
Brownian motion of a tagged particle. Thus, one can sh
@4# that at long wavelengths,CS(k,z) converges to
Dz(z)/z0, i.e.,
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k→0

CS~k,z!5
Dz~z!

z0
[Dz* ~z!, ~3.2!

wherez0 is the friction coefficient of the tracer particle in th
absence of direct interactions, andDz(z) is the Fourier trans-
form of the time-dependent friction functionDz(t) that de-
scribes the frictional effects of the direct interactions on
Brownian motion of a tracer particle, which can be describ
@7# by the following generalized Langevin equation for th
tracer’s velocityV(t):

M
dV~ t !

dt
[2zoV~ t !1f0~ t !2E

0

t

Dz~ t2t8!V~ t8!dt81F~ t !.

~3.3!

Here, f0(t) and F(t) are the random forces whose tim
dependent correlation functions are ^f0(t)f0(0)&
56kBTzod(t) and ^F(t)F(0)&53kBTDz(t). In a previous
application of the GLE formalism to tracer diffusion@7#,
approximate expressions forDz(t) have been derived. On
of them can be written as

Dz* ~ t ![
Dz~ t !

z0
5

kBTn

~2p!3z0E dk
@kzh~k!#2

11nh~k!
F~k,t !FS~k,t !,

~3.4!

wherenh(k)[S(k)21.
As an illustration of the type of self-consistent approx

mations that one can construct employing this result, alo
with the results of the preceding section, let us propose
approximate

CS~k,z!5Dz* ~z! ~3.5!

not only in the limit indicated in Eq.~3.2!, but for arbitrary
wave vectors. This would then lead, using Eq.~2.3!, to the
following expression forFS(k,t)

FS~k,z!5
1

z1
k2D0

11Dz* ~z!

. ~3.6!

If, in addition, we adopt the simplest Vineyard-like approx
mation, namely,C(k,z)5CS(k,z), then we have forF(k,z)
the following result:

F~k,z!5
S~k!

z1
k2D0S21~k!

11Dz* ~z!

. ~3.7!

Equations~3.4!, ~3.6!, and~3.7! now constitute a closed self
consistent system of equations forDz* (z), FS(k,z), and
F(k,z). Although this is not expected to be a particular
accurate approximation, since it must fail severely in t
regime of large wave vectors~and short times!, where the
approximation CS(k,z)5Dz(z) is certainly incorrect, it
serves to illustrate the procedure to construct a s
4-4
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SELF-CONSISTENT GENERALIZED LANGEVIN . . . PHYSICAL REVIEW E64 066114
consistent scheme forF(k,t) and FS(k,t). Thus, after this
illustrative exercise, let us now construct a fully se
consistent scheme that is free from the most severe of t
limitations.

For this, just like in the previous illustrative exercise, w
make use of the fact that lim

k→0
CS(k,z)5Dz* (z). How-

ever, we do not want to destroy one feature of the gen
results in Eqs.~2.1!–~2.4!, which is equally important in the
opposite limit,k→` ~i.e., short distances, and hence, sh
times!. We refer to the fact that these general results w
written in a manner that explicitly incorporates the exa
short-time behavior ofF(k,t) andFS(k,t) ~up to ordert3),
independently of the unknown memory functionsDL(k,z)
andDLS(k,z). In fact, if we setDL(k,z)5DLS(k,z)50 in
Eqs. ~2.2! and ~2.4!, we recover the so-called single
exponential memory~SEXP! approximation@6# for F(k,z)
andFS(k,z). This is about the simplest approximate theo
available for self-diffusion and collective diffusion, and w
originally proposed by Arauz-Lara and Medina-Noyola
imposing the explicit requirement of being exact at sh
times, up to ordert3. The SEXP approximation is defined b
Eqs.~2.1! and~2.3!, with C(k,z) andCS(k,z) given by Eqs.
~2.2! and ~2.4! with DL(k,z)5DLS(k,z)50, i.e., by

CSEXP~k,z!5
k2D0x~k!

z1zI~k!
, ~3.8!

CS
SEXP~k,z!5

k2D0xS~k!

z1zI
(S)~k!

, ~3.9!

where zI(k)[x21(k)L0(k) and zI
(S)(k)[xS

21(k)LS
0(k).

Clearly, @zI(k)#21 and @zI
(S)(k)#21 are the relaxation times

of the memory functionsCSEXP(k,z) and CS
SEXP(k,z), re-

spectively.
Thus, we have two important exact limits for the memo

function CS(k,z), namely,

lim
k→0

CS~k,z!5Dz* ~k! ~3.10!

and

lim
k→`

CS~k,z!5CS
SEXP~k,z!. ~3.11!

Our proposal of a closure relation forCS(k,z), unlike our
illustrative example in Eq.~3.5!, incorporates the small-k
limit in Eq. ~3.10! only as a limiting condition, but in the
opposite limit, it incorporates the exact large wave vec
condition in Eq.~3.11!. Conceptually, we do this not at th
level of CS(k,z), but at the level of the higher-order memo
functionDLS(k,z) @by means of the expression in Eq.~2.4!#,
and require the corresponding limits at the level
DLS(k,z). Thus, from Eq.~2.4!, we see that the limiting
behavior ofCS(k,z) in Eqs.~3.10! and ~3.11!, translate into
the following limiting conditions forDLS(k,z):
06611
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lim
k→0

DLS~k,z!

LS
0~k!

5
k2D0xS

2~k!

LS
0~k!

F 1

Dz* ~k!
2

1

CS
SEXP~k,z!

G ,

~3.12!

and

lim
k→`

DLS~k,z!

LS
0~k!

50. ~3.13!

Since, in the framework of the present work, we do n
have more fundamental information from which we can d
rive DLS(k,z), what we do is to propose judicious assum
tions and guesses for this higher-order memory function. T
simplest of such assumption is precisely a simple functio
dependence onk that interpolates between the two limits
Eqs.~3.12! and ~3.13!, such as

DLS~k,z!5k2D0xS
2~k!F 1

Dz* ~k!
2

1

CS
SEXP~k,z!

Ga~k!,

~3.14!

where a(k) is a dimensionless interpolating function su
that lim

k→0
a(k)51, and lim

k→`
a(k)50. Equation~3.14! is

finally the closure relation that we were looking for, an
expressesDLS(k,z) in terms of known quantities, at leas
once we have defined the interpolating functiona(k). Before
doing this, let us see how the closure relation in Eq.~3.14!
looks like in terms ofCS(k,z). For this, substitute Eq.~3.14!
in Eq. ~2.4!, with the following result

CS~k,z!5CS
SEXP~k,z!1@Dz* ~k!2CS

SEXP~k,z!#l~k,z!,
~3.15!

with

l~k,z![
CS

SEXP~k,z!a~k!

Dz* ~k!1@CS
SEXP~k,z!2Dz* ~k!#a~k!

.

~3.16!

The functionl(k,z), for fixed z, is just another interpolating
function between the two exact limits forCS(k,z) in Eqs.
~3.10! and ~3.11! since, from its definition in Eq.~3.16!, we
can see that lim

k→0
l(k,z)51 and lim

k→`
l(k,z)50.

In this manner, at this point we have all the elements t
we need to construct the self-consistent scheme forF(k,t)
andFS(k,t). This is summarized by the exact results in Eq
~2.1!–~2.4!, the Vineyard-like approximation in terms o
DL(k,z) andDLS(k,z) in Eq. ~2.5!, and the closure relation
in Eq. ~3.14!, with Dz* (k) given by Eq. ~3.4!. The only
missing element of this scheme is the interpolating funct
a(k), for which we arbitrarily choose the following simpl
functional form:

a~k!5
1

11S k

kC
D n . ~3.17!
4-5
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The parameterkC is the wave-vector scale, with respect
which k is small or large, and the parametern determines
how abruptlya(k) goes from 1 to zero ask increases beyond
kC . For k,kC and for k.kC , CS(k,z) is better approxi-
mated by the corresponding limit in Eqs.~3.10! and ~3.11!,
respectively. One would expect thatkC must be of the order
of the position of the main peak of the static structure fac
S(k). The fine tuning in the actual determination of the p
rameterskC andn will be done in the following section.

The scheme just explained, which involvesDL(k,z) and
DLS(k,z), together with the interpolating device involvin
the functiona(k), is the result of a series of basic statistic
mechanical considerations and assumptions. Similar con
erations could lead to several variants of this scheme,
pending on which version@24# of the Vineyard-like approxi-
mation is employed, and which closure relation one ado
The scheme just explained is indeed the most fundame
~in the sense that it involves the highest-order memory fu
tions L(k,z) andLS(k,z) considered here!. We can also say
e
ns

.
by
qs
-

06611
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that it is quantitatively the most accurate one, according
the numerical tests that we have performed.

However, a formally simpler scheme happens to
equally accurate and fundamental, but,a posteriori, looks
like the most obvious proposal for an ‘‘economic’’ sel
consistent theory of colloid dynamics. This corresponds
employing the Vineyard-like approximation involvin
C(k,z) andCS(k,z) in Eq. ~2.6!, and the closure relation fo
CS(k,z) in Eq. ~3.15!, but with an additional simplification
This consists of assuming thatl(k,z) in this equation is not
given by Eq.~3.16!, but thatl(k,z) is itself approximated by
an interpolating function of the type in Eq.~3.17!. This sim-
pler self-consistent scheme can be summarized by Eqs.~2.1!
and ~2.3! for F(k,z) and FS(k,z) in terms of C(k,z) and
CS(k,z), together with the Vineyard-like approximation i
Eq. ~2.6!, and the closure relation in Eqs.~3.4! and ~3.15!,
but with l(k,z) not given by Eq.~3.16!, but replaced by a
simple interpolating function of the type ofa(k) in Eq.
~3.17!. For reference, let us summarize here the result
self-consistent scheme for colloid dynamics that derive fr
the conditions just described,
F~k,z!5
S~k!

z1
k2D0S21~k!

11CSEXP~k,z!1FCSEXP~k,z!

CS
SEXP~k,z!

Dz* ~z!2CSEXP~k,z!Gl~k!

, ~3.18!

FS~k,z!5
1

z1
k2D0

11CS
SEXP~k,z!1@Dz* ~z!2CS

SEXP~k,z!#l~k!

, ~3.19!
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with Dz* (z) being the Laplace transform of

Dz* ~ t !5
D0n

~2p!3E dk
@kzh~k!#2

11nh~k!
F~k,t !FS~k,t !

~3.20!

and with the interpolating functionl(k) given by

l~k!5
1

11S k

kC
D n . ~3.21!

In these equations, the functionsCSEXP(k,z) and
CS

SEXP(k,z) are given by Eqs.~3.8! and~3.9! in terms of the
static properties defined in the Appendix. Thus, for a giv
Brownian fluid in the absence of hydrodynamic interactio
one can input in this scheme the free-diffusion coefficientD0
along with the pair potentialu(r ) of the direct interactions
After calculating the static properties of the Appendix
statistical thermodynamic methods, the solution of E
~3.18!–~3.20! above will provide a fully self-consistent de
scription
n
,

.

of the dynamic properties of the system. The only eleme
not yet determined with complete precision are the para
eters kC and n of the interpolating functionl(k). In the
following section we address the problem of determiningkC

and n, by means of the actual application of this se
consistent scheme to a simple concrete model system
which Brownian dynamics simulations are available. The
we also illustrate the general level of quantitative accuracy
this new theory of colloid dynamics.

IV. SPECIFIC NUMERICAL APPLICATION

In this section we present an application of the se
consistent theory just described to the calculation of the c
lective dynamics of a specific system, namely, a tw
dimensional repulsive Yukawa Brownian fluid. For th
system, we generate Brownian dynamics simulations
F(k,t), with which we compare the predictions of ou
theory. We first compare the results of the self-consist
scheme for a fixed state, to determine the optimum choic
4-6
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the parametersn andkC , which, from there on, will be kep
fixed. We then compare the theoretical calculations with
computer simulation data for other states of the system.
conclusion is that the self-consistent theory exhibits a h
degree of quantitative accuracy for all the states conside
~including highly interacting systems!, and all the regimes
accessible to our computer simulations. The model sys
considered is defined by the pair potential

bu~r !5H K
e2z(r /s21)

r /s
, r .s

`, r ,s

, ~4.1!

wheres is the hard-core diameter of the particles,K is the
pair interaction energy at contact in units ofkBT, andz is the
inverse of the screening length~in units of s21). The basic
dynamic parameter is the diffusion coefficientD0. We shall
only consider the following fixed values of the parametersK
and z, namely,K5500 andz50.15, and vary the reduce
number densityn* 5ns2, wheren is the number of particles
per unit area. There is no special reason for choosing
model system and these fixed values ofK andz, other than
the fact that this system and conditions have been stu
rather extensively elsewhere@9,24,26,27#. Notice that for the
valuesK5500 andz50.15, the Yukawa repulsion preven
the particles from probing hard-core contact. Thus, the len
scales does not have an important physical significance, a
will only be employed as an arbitrary unit length to defi
dimensionless quantities such asn* , or the dimensionless
distancer /s and dimensionless wave vectorks. Similarly,
we do not need to assign a numerical value to the fr
diffusion coefficientD0, since this parameter will be ab
sorbed in the definition of the time scalet0[s2/D0, which
will be employed to define the dimensionless time varia
t/t0. The Brownian dynamics computer simulation expe
ments have been described elsewhere@24,27#. Here we shall
employ the computer simulation results for the radial dis
bution functiong(r ), as the fundamental static structural i
put of our theory. This allows us to avoid at this stage o
possible source of uncertainty, such as that introduced by
use of some integral equation approximation to calcu
g(r ) from u(r ). From the exact~i.e., computer simulated!
g(r ) we calculate the Fourier transformh(k) of the total
correlation functionh(r )5g(r )21, and the static structur
factor S(k)511nh(k). These quantities enter explicitly i
the self-consistent scheme summarized by Eqs.~3.18!–
~3.20!, in which other quantities appear, namely,CSEXP(k,z)
andCS

SEXP(k,z). These are written in Eqs.~3.8! and~3.9! in
terms of the static propertiesx(k), xS(k), L0(k), andLS

0(k)
which, in their turn, are defined in the Appendix@Eqs.~A6!,
~A8!, ~A7!, and ~A9!, respectively# in terms ofg(r ) and of
the three-particle distribution functiong(3)(r ,r 8). The latter
only appears in the last term ofL0(k) in Eq. ~A7! and of
LS

0(k) in Eq. ~A9!. These are the only terms in which w
introduce a simplifying approximation, based on the use
Kirkwood superposition approximation. As discussed in R
@26#, this simple scheme to evaluateL0(k) andLS

0(k) turns
out to be quite effective. In the present context, it also
06611
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the virtue of reducing the need of static inputs of our theo
to the previous determination of onlyg(r ) which, as said
above, is provided here by the computer simulations. F
lowing this procedure, we then go back to our self-consist
system of equations, Eqs.~3.18!–~3.20!, from which we now
determine simultaneouslyF(k,t), FS(k,t), andDz* (t). Al-
though the numerical solution of this nonlinear system
equations may be lengthy and is not trivial, it is in fact rath
straightforward.

We started by solving Eqs.~3.18!–~3.20! for a variety of
interpolating functions within the family in Eq.~3.21!. The
corresponding solutions forF(k,t) are then compared with
the exact~computer simulated! values for this property. We
did this by varying the parametersn and kC at an arbitrary
fixed state, and for a fixed time, representative of the in
mediate time regime. After doing this for various times a
fixed states, it emerged that the optimum value of the par
etersn and kC are n52 and kC5kmin , where kmin is the
position of the first minimum of the static structure factor.
Fig. 1 we illustrate the comparisons involved in this proce
for a highly interacting system,n* 50.015, at an intermedi-
ate timet/t055.0. In Fig. 1~a! we present the results of ou
theory for F(k,t) as a function ofk, for various values of
n(52,6,10) keepingkC fixed atkCs5kmins51.11, whereas
in Fig. 1~b!, we keep fixedn52 and varykC @kC5k, , kmax,
kmin , k. , wherekmaxs50.81 is the position of the main pea
of S(k), k,s50.73 is a wave vector slightly belowkmax, at
which S(k)'1, andk.s51.6 is the location of the secon
maximum ofS(k)#. From the comparison with the compute
simulation results, represented by the symbols, it is clear
the optimum choice of the parametersn andkC is indeedn
52 andkC5kmin . At this point, we adhere to this prescrip
tion for the definition of these parameters. Thus, from n
on, there is no input of the theory other thanu(r ) andg(r ).
Let us now illustrate its application to the same system,
at other time and/or concentration regimes.

In Fig. 2 we present the theoretical results forF(k,t)
~solid lines! as applied to the same system but at conditio
representative of the regimes of intermediate (n* 50.009)
and strong (n* 50.015) coupling. The results in Fig. 2~a!
illustrate the behavior of these two conditions at relative
short times, where still the SEXP approximation provide
good representation of the dynamics of the system. For
erence, in Figs. 2~a! and 2~b!, the SEXP results, obtaine
from Eq. ~3.18! with l(k)50, are also included~dashed
lines!. Figure 2~b! presents a similar comparison as in Fi
2~a!, but at a longer time, representative of the intermedia
time regime. The general conclusion drawn from this co
parison is, on the one hand, that our self-consistent the
provides quite an accurate representation of the time
wave-vector dependence of the intermediate scattering fu
tion F(k,t) at the short- and intermediate-time regimes
our system under conditions of weak, intermediate, a
strong couplings. Figures 2~a! and 2~b! also illustrate the
improvement introduced by our theory over the much si
pler, SEXP approximation. The latter, does provide a sim
and accurate representation ofF(k,t) at low concentrations
and short times@16,27#, but it fails for moderately to highly
correlated systems at intermediate and long times. In the
4-7
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velopment of our present theory, this simple approximat
served as an important conceptual reference, upon which
elaborated the correction that allowed the proposal of
fully self-consistent scheme in Eqs.~3.18!-~3.20!. Figure
2~b! illustrates the extent to which this correction is impo
tant at progressively longer times.

To continue with the illustration of the results of our se
consistent theory for the same model system, in Fig. 3
present the corresponding results forF(k,t) for n* 50.009 at
the longest time we considered in the computer simulat
For comparison, Fig. 3 includesF(k,t) at t/t050 ~i.e.,
S(k)), t/t0513.85, andt/t0524.93. Clearly, the high leve

FIG. 1. Intermediate scattering functionF(k,t) as a function of
the reduced wave vectorks, for the Yukawa system@Eq. ~4.1!#
with K5500, z50.15 forn* 50.015 att/t055.0. ~a! Comparisons
using the interpolating functionsl(k) @Eq. ~3.21!# with kc5kmin ,
andn52 ~solid line!, n56 ~dashed line! andn510 ~dotted line!.
~b! Comparisons using the interpolating functions withn52 and
kc5k, ~dotted line!, kc5kmax ~dashed line!, kc5kmin ~solid line!
andkc5k. ~dot-dashed line!. Open circles represent the Brownia
dynamics~BD! results.
06611
n
e

e

e
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of quantitative accuracy of our theory at those relatively lo
times is again evident from this comparison. For referen
we mention that the SEXP~not shown in this figure!, only
reproduces qualitatively the time evolution of the main pe
of F(k,t), but predicts a much faster decay of its amplitu
compared to the simulation results and to the results of
theory, which in Fig. 3 are virtually indistinguishable from
each other.

Finally, in Fig. 4 we illustrate the behavior of the inte
mediate scattering functions under certain limiting con
tions. For this, we plot the theoretical results for
2@S(k)/k2# ln@F(k,t)/S(k)# and2(1/k2)ln@FS(k,t)# as a func-

FIG. 2. Intermediate scattering functionF(k,t) for the same
system as in Fig. 1, but withn* 50.009 ~left! and n* 50.015
~right!, ~a! for t/t050.83~b! for t/t055.0. Solid lines represent ou
theoretical results with parameters withn52 and kc5kmin ,
whereas the Brownian dynamics simulations are represented b
symbols. The results of the single exponential~SEXP! approxima-
tion are also included~dashed lines!.
4-8
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tion of t/t0 for a system with intermediate concentratio
(n* 50.009), and for values of the wave-vector represen
tive of three regimes:k!kmax, k'kmax and k.kmax @at
which S(k)'1#. For this system,kmaxs50.63 is the position
of the main peak ofS(k), and we selectk,s50.02 and
k.s51.10 as values of the wave vector much less than,
much larger thankmax respectively. Notice first that at sho
times all the curves in Fig. 4 become indistinguishable fr
each other and from the free-diffusion curve~the straight line
with unit slope, see the inset!. This reflects the exact shor
time limit built in our theory. Notice also another importa
limit: for all times, F(k,t) should also decay asF(k,t)
5S(k)exp@2k2D0t/S(k)# in the limit of small wave vectors
This is illustrated by the results for the collective interme

FIG. 3. Theoretical predictions~solid lines! for F(k,t) with pa-
rametersn52 and kc5kmin , for a system withn* 50.009 andt
50, t/t0513.85, andt/t0524.93. The open circles represents B
results.

FIG. 4. Theoretical predictions for the intermediate scatter
functionF(k,t)/S(k) ~lines! andFS(k,t) ~symbols! againstt/t0 for
the system as in Fig. 3, and three different values ofks: k,s
50.02 ~solid line and open squares!, kmaxs50.63 ~dashed line and
open circles!, andk.s51.1 ~dot-dashed line and open triangles!.
The free-diffusion regime is also included~dotted line!.
06611
-

d
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ate scattering function atk,s50.02. On the other hand, fo
all wave vectors,F(k,t) andFS(k,t) are expected to deca
exponentially for asymptotically long times, with decay co
stantsk2D0S21(k)/@11C(k,z50)# and k2D0 /@11CS(k,z
50)#, respectively. Although Fig. 4 only exhibits results fo
a limited time window, this long-time behavior seems to
already established. Other important features are also ap
ent in Fig. 4. Thus, for wave vectors very large compared
kmax, we expect that the collective and the self-intermedi
scattering functions exhibit the same time dependence. H
we illustrate this with the results corresponding tok.s
51.10. Although this value is not much larger thankmax, it
was chosen such that the static structure factor is unity.
nally, let us notice that at short times, all the data fo
2(1/k2)ln@FS(k,t)# converge to a single curve. This indicate
that at short timesFS(k,t) is Gaussian to a very good ap
proximation. At longer times, however, there is a noticea
dependence of2(1/k2)ln@FS(k,t)# on the wave vector. This
concludes the discussion of the application of our se
consistent theory to the specific system employed here w
illustrative purpose.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented our proposal for a s
consistent theory of the dynamic properties of a colloid
suspension in the absence of hydrodynamic interactions.
theory was build upon four basic ingredients:~a! the exact
results forF(k,t) and FS(k,t) in terms of a hierarchy of
memory functions, as derived from the application of t
GLE formalism; ~b! the proposal of Vineyard-like connec
tions betweenF(k,t) and FS(k,t) through their respective
memory functions;~c! an approximate expression for one
these memory functions in terms of the time-dependent f
tion functionDz(t); and ~d! a closure relation forDz(t) in
terms of F(k,t)and FS(k,t), also derived within the GLE
formalism. As a result, we arrived at the self-consistent s
tem of equations summarized in Eqs.~3.18!–~3.20!, and in-
volving only F(k,t), FS(k,t), andDz(t). The other quanti-
ties entering in these equations are static properties that
be written in terms of the radial distribution functiong(r )
and of the three-particle distribution functiong(3)(r ,r 8) ~al-
though, in practice, as explained in the preceding section
in Ref. @26#, only g(r ) is required in their approximate
evaluation!. The only element left undetermined in our se
consistent system of equations is the interpolating funct
l(k) in Eqs. ~3.18! and ~3.19!. Whenl(k)50, we recover
the SEXP approximation. Here, however, we explored a fa
ily of interpolating functionsl(k) described by Eq.~3.21!.
In the absence of a more fundamental principle to determ
l(k), we proceeded to fix the parametersn and kC in Eq.
~3.21! by means of the calibration of our theory by compa
ing its results, for various values ofn and kC , with the
results of a Brownian dynamics computer simulation expe
ment. For this we choose a simple model system, name
two-dimensional Brownian repulsive Yukawa fluid. This a
lowed us to fix the only element of our self-consiste
scheme that was not determined on the basis of physic
reasonable arguments, thus leading to our final choicen52

g
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and kC5kmin @wherekmin is the location of the first mini-
mum of S(k)#. In this manner, our self-consistent theor
represented by Eqs.~3.18!–~3.20! with this choice ofn and
kC , is now a closed system of equations, which only ne
the pair potential and the radial distribution function as
only specific static inputs.

In the preceding section we illustrated the quantitat
predictive power of our theory by comparing its results w
the simulation data for the same model system. As illustra
in Figs. 2 and 3 above, this theory is capable of describ
the dynamic properties contained inF(k,t) in a wide range
of conditions, involving strongly correlated systems, at
longest times available from our computer simulations.

The presentation of our theory, and its concrete appl
tion that served as an illustration, now leave open sev
important questions. Thus, one would like to know if t
choice of the parametersn52 and kC5kmin happen to be
specific for the present system, or if they continue to b
good selection for other systems. We can advance@28# that at
least for the three-dimensional version of the present sys
this choice ofkC continues to be as good a choice as for
system discussed here, but the optimum value of the par
etersn is n56. At present, however, we cannot identify
meaningful fundamental reason for this fact, neither a co
pelling reason for a different choice of the interpolating fun
tion l(k).

As already stressed above, our theory seems to be hi
accurate in its description of the dynamics of strongly cor
lated systems at long times. Hence, one would expect
same theory to provide a qualitatively accurate description
the phenomenology of the ideal glass transition@20# in
strongly correlated systems. As we shall discuss separa
@29#, this also turns out to be the case. Other aspects
which we shall report shortly, concern the extension of t
theory to colloidal mixtures and to systems with strong h
drodynamic interactions. In this paper we only wanted
stress the main physical ideas upon which these deve
ments are being built.

ACKNOWLEDGMENTS

We acknowledge the support of CONACYT~Consejo Na-
cional de Ciencia y Tecnologı´a, Mexico! through Grant No.
G29589-E: Fı´sica de las Suspensiones Coloidales a
NC0072: Materiales Biomoleculares, and of the Programa
Simulación Molecular del Instituto Mexicano del Petro´leo
~IMP, Mexico! through Grant No. FIES-98-101-1. L.Y.R. ac
knowledges the support of the Proyecto Interno PI/009
from the Area de Co´mputo de Alto Rendimiento~ACAR! of
the Universidad de Sonora~UNISON, Mexico!.

APPENDIX: STATIC PROPERTIES

In this appendix we summarize the essential express
for the static propertiesx(k), L0(k),xS(k), andLS

0(k) asso-
ciated withF(k,z) and FS(k,z) @see Eqs.~2.1!–~2.4!#. As it
was explained in Ref.@22#, an adequate description in th
diffusive regime can be done in terms of the fluctuations
the local concentrationdn(k,t), the longitudinal current
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d j l(k,t), and the kinetic and configurational components
the stress tensor,dsK(k,t) and dsU(k,t), respectively. In
that paper, the microscopic definition of each of these
namic variables was given, along with their static correlat
functions. Here we focus our attention on the configuratio
component of the stress tensor, defined as

dsU~k,t !5dsU8 ~k,t !1
kBT

M
dn~k,t !, ~A1!

where

dsU8 ~k,t ![2
1

2MAN
(
i 51

N

(
j Þ i

r i j
a r i j

b

r i j
2

Pk~r i j !e
ik•r i (t)2dp

~A2!

and

Pk~r i j ![r i j

du~r i j !

dri j

eik•r i j (t)21

k•r i j ~ t !
, ~A3!

whereu(r ) is the interparticle effective pair potential. Sinc
x(k) is defined as

x~k![^dsU~k,0!dsU~2k,0!&, ~A4!

we can write

x~k![^dsU8 ~k,0!dsU8 ~2k,0!&2S kBT

M D 2

^dn~k,0!

3dn~2k,0!&. ~A5!

Using Eqs.~A2! and ~A3! for the components ofdsU(k,t),
and remembering thatS(k)[^dn(k,0)dn(2k,0)&, one can
perform the statistical mechanical calculation of the sta
correlation functionx(k) to obtain

x~k!5S kBT

m D 2F11nE drg~r !
]2bu~r !

]z2 S 12cos~kz!

k2 D
2

1

S~k!G . ~A6!

On the other hand, as it was pointed out in Ref.@21#,
L0(k) is related to the ‘‘Markovian’’ contribution of the con
figurational memory functionLUU(k,t). In that reference, the
precise definition ofL0(k) was established@see Eqs.~4.24!
and~4.28! of Ref. @21#, whereL0(k) is denoted byLUU

0 (k)#,
and arguments were given to arrive at the following expr
sion for this quantity in terms of the two- and three-partic
distribution functiong(r ) andg(3)(r ,r 8):
4-10
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M2b2L0~k!5nD0E d3rg~r !
]2bu~r !

]z2
@112 coskz#2

D0n2

k2 F E d3rg~r !
]2bu~r !

]z2
~12coskz!G 2

1
2D0n

k E d3rg~r !
]3bu~r !

]z3
sinkz1

2D0n

k2 E d3rg~r !~12coskz!F],bu~r !

]z G2

1
D0n2

k2 E d3rd3r 8g~r ,r 8!$122 coskz1cos@k~z2z8!#%F],bu~r !

]z GF ],8bu~r 8!

]z8
G . ~A7!

In a similar way, one can derive the corresponding properties for self-diffusion,x (S)(k) and LS
0(k), with the following

results@22#:

x (S)~k!5
~kBT/M !2

k2 FnE drg~r !
]2bu~r !

]z2 G ~A8!

and

k2M2b2LS
0~k!5k2D0FnE drg~r !

]2bu~r !

]z2 G2D0n2F E d3rg~r !
]2bu~r !

]z2 G 2

12D0nE d3rg~r !F],bu~r !

]z G2

1D0n2E d3rd3r 8g~r ,r 8!F],bu~r !

]z GF ],8bu~r 8!

]z8
G . ~A9!

In the equations above,u(r ) is the effective interaction pair potential between colloidal particles. Finally, we should repea
in this paper we have systematically dropped the subindex ‘‘UU ’’ employed in Ref.@21#, wherex(k), x (S)(k), L0(k), and
LS

0(k) are denoted, respectively, byxUU(k), xUU
(S) (k), LUU(k), andLUU

(S) (k).
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