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We present a general self-consistent theory of colloid dynamics which, for a system without hydrodynamic
interactions, allows us to calculate(k,t), and its self-diffusion counterpafg(k,t), given the effective
interaction pair potentiali(r) between colloidal particles, and the corresponding equilibrium static structural
properties. This theory is build upon the exact resultd=fige,t) andFg(k,t) in terms of a hierarchy of memory
functions, derived from the application of the generalized Langevin equation formalism, plus the proposal of
Vineyard-like connections betwedr(k,t) and Fg(k,t) through their respective memory functions, and a
closure relation between these memory functions and the time-dependent friction fuAdiion As an
illustrative application, we present and analyze a selection of numerical results of this theory in the short- and
intermediate-time regimes, as applied to a two-dimensional repulsive Yukawa Brownian fluid. For this system,
we find that our theory accurately describes the dynamic properties contairkgdk,ir) in a wide range of
conditions, including strongly correlated systems, at the longest times available from our computer simulations.
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[. INTRODUCTION cal concentration fluctuationgl]. These are governed by
some form of generalized diffusion coefficient, although
The description of the dynamic properties of colloidal what is actually measured is the van Hove funct@&m,t) of

suspensions is an important experimental and theoreticdhe Brownian fluid, or its Fourier transform, the intermediate
problem of current interest. Over the years, the developmergcattering functior=(k,t) [1,17,18. This function contains,
of a fully satisfactory microscopic description of colloid dy- in principle, all the dynamic information of the equilibrium
namics has proved to be a challenging tekR]. One would ~ suspension. Thus, the development of conceptually clear, and
like to see a general and systematic theory, firmly groundeduantitatively accurate, statistical mechanical theories is re-
on well-established fundamental principles, involving only aquired for the fundamental understanding of this important
few physically transparent assumptions and approximationsollective-diffusion property. The present work is aimed at
and requiring, as the only input, well-defined microscopicthe development of one such theory.
parameters. From a more practical perspective, one would Thus, in this paper we present a general self-consistent
also expect such a theory to be simple enough to allow théheoretical scheme that allows us to calculafé,t) and its
nonspecialist to perform extensive applications to the interself-diffusion counterparEg(k,t), given the effective inter-
pretation of experimental measurements in a variety of sysaction pair potentiali(r) between colloidal particles, and the
tems and conditions. Of course, all these boundary condicorresponding equilibrium static structural propertisach
tions are virtually impossible to meet by a single grandas, the static structure fact&(k) or the radial distribution
theoretical formalism. As a result, what we have is a rathefunction g(r)]. In the present discussion we shall have in
diverse array of approaches, formal derivations, exact anthind a monodisperse colloidal suspension in the absence of
approximate results for various limiting conditions and hydrodynamic interactions, since our present aim is only to
cases, and a few effective or physically intuitive shortcuts tdllustrate the general procedure employed to construct such a
the most difficult aspects of this complex many-body prob-self-consistent scheme. Thus, the emphasis in this paper is on
lem [3—15. Taken together, all these theoretical develop-the conceptual basis of the approximations introduced in our
ments, mostly produced within the last 20 years, have protheory, rather than on the details of its application to more
vided a partial but sound theoretical interpretation of a largecomplex systems.
number of experimental facts. These involve important ef- Let us mention that the theory presented here is certainly
fects present in everyday colloidal suspensions, such aspt the only proposal available of a fully self-consistent
charge effects in electrostatically stabilized suspensions angtheme for the collective and self-dynamics of colloidal sus-
the effects of direct and hydrodynamic interactions in hardpensions. In fact, as early as in 1983, Hess and Kldin
sphere-like suspensions. We must say, however, that most pfoposed the translation to colloids of the mode-coupling
the quantitative tests of the theory have been related, so fasglf-consistent theory of molecular liquifs9,20. Although
to the description ofelf or tracer-diffusion phenomena, in their proposal included an initial version of a fully self-
which one measures averaged properties of the Browniaconsistent scheme for colloidal systems, only until recently
motion of individual particles. In contrast, inollective  extensive calculations based on such theory were reported in
diffusion experiments one measures the relaxation of the lothe literature[13]. More recently, Ngele and coworkers
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have developed a more elaborate version of this modethe first two steps referred to above. These are, respectively,
coupling theory specifically devised to deal with colloidal the general memory-function expressions fok,t) and
liquids [14]. The resulting self-consistent scheme has beeirg(k,t), and the Vineyard-like relationships between these
extended and applied in several interesting directidd,  two properties. In Sec. Il we describe the remaining steps of
although only until recently the level of its quantitative ac- the development of our theory, which finally lead to our fully
curacy has been documentétl5,16. Our present theory self-consistent scheme. In Sec. IV we present and analyze a
shares with such proposal a humber of important featureselection of illustrative results of the numerical solution of
such as, the prediction of the ideal glass transif2@] in a  this theory in the short and intermediate times, as applied to
monodisperse system, and the possibility of extension ta specific model system, namely, a two-dimensional repul-
more complex conditions. This is a consequence of the simisive Yukawa Brownian fluid. For this system we also per-
larity in the mathematical structure of the resulting self-form Brownian dynamics computer simulations, with the
consistent schemes. As we shall see below, however, théea of calibrating the qualitative and quantitative accuracy
main difference of our proposal, with respect to the mode-of this theory in the time regimes referred to above. Section
coupling approach, lies on the conceptual framework uporv summarizes the main conclusions of this work, and dis-
which our theory is built. cusses the potential applications of the theory developed
Our theory is explicitly based on the formalization of two here.
physically intuitive notions, namely, that collective diffusion

should be related in a simp_le manner to self-diffusion, and Il. GENERAL RESULTS AND VINEYARD-LIKE

that space-dependent self-diffusion, in its turn, should be re- APPROXIMATIONS

lated in a simple manner to the mean squared displacement

(or otherk-independent self-diffusion propejtyThe devel- The intermediate scattering functiéi(k,t) of a colloidal

opment of our theory will involve four distinct fundamental fluid contains the most relevant information on the dynamic
steps. The first of them consists of the derivation of the mosproperties of such systenf4]. This function is the spatial
general and exact expressions f6(k,z) and Fg(k,z) in Fourier transform of the van Hove functi@(r,t) that mea-
terms of a hierarchy of memory functions. The generalsures the spatial and temporal correlations of the fluctuations
method (i.e., the generalized Langevin equation approachsn(r,t)=n(r,t) —n of the local concentration(r,t) at po-
[7,21]) employed to derive such exact expressions, alongitionr and timet around its equilibrium bulk averagei.e.,
with the most general results, has been explained and illuss(|r —r’'|;t)=({én(r,t) n(r’,0)), where the angular brack-
trated in a recent work22]. The second step consists of the ets indicate average over the equilibrium ensenBld]. A
formalization of the notion that collective dynamics shouldclosely related property is the so-calleslf-intermediate
somehow be simply related to self-dynamics. Vineyard’s apscattering functionFg(k,t). This is defined asFg(k,t)
proximation [23] is a simple (although qualitatively and =(e'*"AR®) whereAR(t) is the displacement at timieof
quantitatively rather primitive[17,18) implementation of any of the particles of the Brownian fluid.
this idea. This aspect has also been discussed separately;In previous related work22,25, the generalized Lange-
thus, in Ref.[24] the general expressions féi(k,z) and  vin equation(GLE) approach, and the concept of the con-
Fs(k,z) in terms of higher-order memory functions have traction of the descriptiofi7,21], was employed to derive the
been employed to propose and test a hierarchy of Vineyardnost general time-evolution equation for the fluctuations
like approximations. Adopting any of these approximations,sn(r,t) of a monodisperse colloidal suspension in the ab-
reduces the problem of colloid dynamics to the determinasence of hydrodynamic interactions. In such derivation, the
tion of Fg(k,z) or any of its memory functions. The third assumed underlying microscopN-particle dynamics was
basic step of the present theory consists of the proposal fgsrovided by the many-particle Langevin equatidd. As a
the determination oF g(k,t). This step will be based on the result, expressions are derived fBi(k,t) [or its Laplace
physically intuitive expectation that space-dependent selftransformF(k,z)] in terms of a hierarchy of memory func-
diffusion [represented by g(k,t)] should be simply related tions, and of static structural properties of the Brownian fluid
to the properties that characterize the Brownian motion of22]. In these expressions, the Brownian relaxation tirge
individual particles[1,4], just like in the Gaussian approxi- =M/{° (or the corresponding frecuenay= ) appears,
mation, which expresseBg(k,t) in terms of the mean- whereM and(° are, respectively, the mass and the solvent-
squared displacement/(t) as Fg(k,t)=e WO |n the friction coefficient of each particle in the suspension. In the
present paper we propose an analogous connection, but at thbsence of friction {°—0), these expressions correspond to
level of the memory functions oF¢(k,t) and W(t). The those of a simple atomic liquiflL8]. In the presence of fric-
memory function ofW(t) is the so-called time-dependent tion, and in order to “tune” these expressions to the time
friction functionA £(t). As a final step in the development of regime normally probed by dynamic light scattering experi-
our theory, we shall rely on the results of the generalizednents, or by Brownian dynamics simulations, the lirhit
Langevin equation formalism for tracer diffusif], which > g, orz<zg, must be taken. Taking this, so-called “over-
leads to an expression fak{(t) in terms of F(k,t) and damping” limit [4], requires a careful analysis, which was
Fg(k,t). Such closure relation finally determines our fully the main subject of Ref22]. As a result, one gets the most
self-consistent theory of colloid dynamics. general expression fdf(k,t) that describes the dynamics of
In the following section we summarize the main results ofthe suspension in the diffusive regimee., for timest
Refs.[22] and[24], which contain the elements involved in > 7). The resulting “overdamped” expressions fe(k,z),
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along with the corresponding result féi5(k,z), constitute  for all wave vectorsF(k,t) and Fg(k,t) are expected to

the starting point of the present discussion. decay exponentially for asymptotically long times, with de-
According to Ref.[22], the most general expression for cay constantk?D,S™1(k)/[1+C(k,z=0)] and k?Dy/[1
F(k,z) in the diffusive regime can be written as +Cgq(k,z=0)], respectively(some of these general limiting
behaviors are illustrated in Fig. 4 belpwWe should also
S(k) mention that several authors, most recentlygdla and co-
F(k,z):—km (2.3) workers, have rederived Ackerson’s results also using the
m projection operator formalism with th&l-particle Smolu-
' chowski dynamics. The basic general results, however, are
with the memory functiorC(k,z) given by precisely Egs.(2.1) and (2.3 above, with C(k,z) and
Cg4(k,z) referred to as the normalized irreducible memory
k?Dox (k) functions. The starting point of the approximate theory de-
C(k,z)= (2.2 veloped here are indeed these general results, but comple-

-1 0 -1 !
z+x (kLK +x (k)AL (k,2z) mented with the additional information contained in Egs.

(2.2 and(2.4), which express the irreducible memory func-
tions C(k,z) and Cg(k,z) in terms of the still higher-order
memory functionsAL(k,z) andALg(k,z).

The second element in the construction of our self-
consistent theory is the proposal of a higher-order Vineyard-
like relationship betweeR (k,t) andFg(k,t). Vineyard’s ap-
proximation consists of the simplest of such relations,
namely,F(k,t) is approximated directly b¥ g(k,t)S(k). In
Ref.[24], we studied alternative, more sophisticated manners
to refer collective dynamics to self-diffusion. Rather than

assumed to be known. Thus, the only unknown in the expresr-elating':(k’t) directly t_o Fs(k,t), we proposed to apprqxi-
sion for F(k,z) in Egs.(2.1) and(2.2) is the memory func- mate a memory function oF(k,t) by the corresponding
tion AL(K,2). memory functlor) oﬂ:S(k,t_). _

As an illustration, consider Eq&.1)—(2.4). This suggests
to relate F(k,z) to Fg(k,z) through their higher-order
memory functionsAL(k,z) and ALg(k,z). The detailed

whereD,=kgT/{° is the free-diffusion coefficient of each
particle kgT being the thermal energy S(k) the static
structure factor, ang((k) the static correlation function of
the fluctuations of the configurational component of the
stress tensor of the Brownian fluifllotice that in Ref[22],
x(k) andAL(k,z) carry a subindex UU,” which we shall
drop systematically in this papery(k) andL°(k) are static
properties that can be writtdsee Eqs(A6) and(A7) of the
Appendix, respectivelyin terms of the two- and three-
particle correlation functiong(r) andg®)(r,r"), which are

The corresponding results féig(k,z) can be written as

1
Fs(k,z)= D, (2.3  manner in which this is done turns out to be important, as it
74 Do was discussed in Ref24]. For our present purpose, how-
1+Cgq(k,2) ever, it is sufficient to say that the most accurate and funda-

mental proposal for a Vineyard-like connection between

where F(k,z) andFg(k,2) is defined by the following approxima-
tion:
k?Doxs(k)
Cokz)=——F 5 (2.4
z+ x5 (K)Lg(k) + xs "ALg(k,2) AL(k,z) ALg(k,2z)

. 0 . . . 0 = 0 (25)
with xs(k) and LY(k) also defined in the AppendikEgs. L™(k) Ls(k)
(A8) and(A9), respectively.

Let us notice that the general expressions in E2}4) and Taken together with Eq92.1)—(2.4), this equation de-

(2.3 for F(k,z) andFg(k,z) in terms of the memory func- fines an approximate scheme that allows us to express
tions C(k,z) andCg(k,z) can also be derived using alterna- F(k,z) andFg(k,z) in terms of a single memory function,
tive general theoretical frameworks. Thus, starting from thenamely, ALS(k,z)/Lg(k). As said above, this is the most
N-particle Smoluchowski dynamics, and employing projec-accurate Vineyard-like approximation among the ones that
tion operator techniques, Ackersdr8] derived a time- can be suggested from the exact results Fgk,z) and
evolution equation forF(k,z) and Fg(k,z) which can be Fg(k,z) in Egs.(2.1)—(2.4). One reason for such accuracy is
written as our Eqs(2.1) and(2.3) above, provided we iden- the fact that the use of the exact results in E@sl)—(2.4)

tify Ackerson's memory function M(k,z) with  guarantees that, independently of the value\af(k,z) and
k?DoC(k,2)/[1+C(k,2)], and similarly for self-diffusion. ALg(k,z), the resulting expressions fér(k,t) and Fs(k,t)
Thus, all the relevant limiting properties df(k,t) and satisfy exactly the first thregshort-time moment conditions
Fs(k,t) (long times, small wave vectors, etdiscussed al- [5,6].

ready by Ackerson, will be inherited by any approximate In practice, however, in this work we shall employ a
theory based on the general results in Egsl) and(2.3). In  Vineyard-like connection betweerr(k,z) and Fg(k,2),
particular, on the basis of these results we expectRigkjt) which is defined in terms of a simple connection between the
and Fg(k,t) will decay exponentially at short times for all memory functionC(k,z) andCg(k,z), but which happens to
wave vectors, and at small wave vectors for all times, withbe just as accurate as the most sophisticated proposal in Eq.
decay constantk?D,S™1(k) and k?D,, respectively. Also, (2.5. This Vineyard-like approximation also preserves the
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exact short-time limit up to ordar for F(k,t) andFg(k,t), AL(2)
and is defined by the general results in E@s1) and(2.3), limCg(k,z)= 5 =A{*(2), (3.2
along with the following approximate relatid@24]: k—0 '

C(k,2) co(k.2) where(” is the friction coefficient of the tracer particle in the

- ' (2.6) absence of direct interactions, and(z) is the Fourier trans-

CS®*fk,z) C2¥Mlk,2) form of the time-dependent friction functiah/(t) that de-
scribes the frictional effects of the direct interactions on the

where CSEXRk,z) and CSF*f(k,z) are given, respectively, Brownian motion of a tracer particle, which can be described

by Egs.(2.2) and (2.4) with AL(k,z)=ALg(k,z)=0 [see [7] by the following generalized Langevin equation for the

also Egs.(3.9 and (3.9) below]. Just like the previous tracer’s velocityV(t):

higher-order Vineyard-like approximation, this scheme re-

fers both,F(k,z) andF«(k,z), through Egs(2.1), (2.3), and MdV(t) = — OVt +o(t) - ftAf(t—t')V(t’)d'['-i-F(t).

(2.6), to the knowledge of a single memory function, namely, dt 0

Cg(k,z). Thus, the remaining problem is to find a closure 3.3
relation for this system of equations, and our proposal for 0 .
this follows in Sec. Ill. Here, f°(t) and F(t) are the random forces whose time-

dependent  correlation  functions  are(f°(t)f°(0))
=6kgT¢°58(t) and (F(t)F(0))=3kgTA{(t). In a previous
application of the GLE formalism to tracer diffusidiT],
approximate expressions far{(t) have been derived. One

Conceptually, what we did in the preceding section was te®f them can be written as
write down in concrete mathematical terms the intuitive ex-
pectation that collective dynamics must be closely related to, .~ Al(t)  KkgTn [kh(K)]?
self-diffusion dynamics. As indicated at the end of last sec- A4 (D= 0 _(217)3§°f 1+nh(k) FlkFs(k.b),
tion, here we shall choose a particular proposal for such a (3.4
relationship. This proposal consists of the exact results for
F(k,z) and Fg(k,z) in terms of the memory functions wherenh(k)=S(k)—1.
C(k,z) andCg(k,2) in Egs.(2.1) and(2.3), along with the As an illustration of the type of self-consistent approxi-
approximation forC(k,z) in terms ofCg(k,z) given by Eq.  mations that one can construct employing this result, along
(2.6) above. To proceed, we need an independent closurngith the results of the preceding section, let us propose to
relation between these four unknown functions, and this isapproximate
the subject of this section. Here, too, we look for a simple
physical notion that guides us, and this is the expectation that Cs(k,2)=A*(2) (3.9
the k-dependent self-diffusion properties, represented by ] o ] )
Fy(k,z) or Cg(k,2), should be related in a simple manner to Not only in the I|m_|t indicated in Eq(3.2), .but for arbitrary
the (k-independent properties that describe the Brownian Wave vectors. This would then lead, using E2.3), to the
motion of tagged particles. This notion is best illustrated byfollowing expression foiFg(k,t)
the well-known Gaussian approximation feg(k,t), which
writes

Ill. CLOSURE RELATIONS AND SELF-CONSISTENT
DYNAMICS

1
Fsk,z)= T @b, (36
5 _ 70
Fo(k,t)=e KWW, (3.9 " 1+A*(2)

where W(t)=((AR(t))?)/6 is the mean-squared displace- f, in addition, we adopt the simplest Vineyard-like approxi-

ment of a tagged particle. If we had an independent determimation, namelyC(k,z) = C<(k,z), then we have foF (k,z)
nation of W(t), then Eq.(3.1) provides a closed representa- the following result:

tion of self-diffusion dynamics, and, through the results of

the preceding section, we would also have an approximate S(k)

representation of collective dynamics. F(k,2)= o (3.7
Here, however, instead of the Gaussian approximation, 24 k"DoS (k)

we propose an alternative format for the approximate rela- 1+Al*(2)

tionship between th&dependent properties describing self-

diffusion and thek-independent properties describing the Equationg3.4), (3.6), and(3.7) now constitute a closed self-
Brownian motion. For this, let us notice that in one particularconsistent system of equations far* (z), Fg(k,z), and
limit, the function C4(k,z) can be identified with a well- F(k,z). Although this is not expected to be a particularly
defined property that is central to the description of theaccurate approximation, since it must fail severely in the
Brownian motion of a tagged particle. Thus, one can showegime oflarge wave vectorsand short times where the

[4] that at long wavelengthsCg(k,z) converges to approximation Cg(k,z)=A¢(z) is certainly incorrect, it
A1 ie., serves to illustrate the procedure to construct a self-
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ponsistgnt scheme fdf(k,t) and Fg(k,t). Thus, after this . ALg(K,2) kZDoxg(k) 1 1
illustrative exercise, let us now construct a fully self-  lim—; = - —s5xF ,
consistent scheme that is free from the most severe of these k—0 Lg(k) Ls(k) [Ag*(k) Cg™(k,2)
limitations. (3.12

For this, just like in the previous illustrative exercise, we

make use of the fact that lim Cs(k,2)=A*(2). How- and

ever, we do not want to destroy one feature of the general ALg(k,z)

results in Eqs(2.1)—(2.4), which is equally important in the im—py——= (3.13
opposite limit,k—oo (i.e., short distances, and hence, short ke Lg(k)

times. We refer to the fact that these general results were ,

written in a manner that explicitly incorporates the exact SINCe, in the framework of the present work, we do not
short-time behavior of (k,t) andFg(k,t) (up to ordert3), h_ave more fundamental mfprmatmn from_whlgh we can de-
independently of the unknown memory functioag (k,z) ~ 'V€ ALs(k,2), what we do is to propose judicious assump-
andALg(k,2). In fact, if we setAL (k,z)=AL«(k,2)=0 in tions and guesses for this higher-order memory function. The
Egs. (25_‘2)’ and (2_4)’ we recover the so-scal,led single- simplest of such assumption is precisely a simple functional
exponential memor;(SEXF) approximation[6] for F(k,z) dependence ok that interpolates between the two limits in
andFg(k,z). This is about the simplest approximate theoryEqS'(3'12) and(3.13, such as

available for self-diffusion and collective diffusion, and was

originally proposed by Arauz-Lara and Medina-Noyola by 12 2 _
imposing the explicit requirement of being exact at short ALs(ki2)=k"Doxs(k) Az*(k)  C3F*lk,2) a(k),
times, up to ordet®. The SEXP approximation is defined by (3.19
Egs.(2.1) and(2.3), with C(k,z) andCg(k,z) given by Egs.
(2.2) and(2.4) with AL(k,z)=ALg(k,z)=0, i.e., by where (k) is a dimensionless interpolating function such
thatlim e(k)=1,andlim__«(k)=0. Equation(3.14) is
CSEXR K 7) = k?Dox(k) 38 finally the closure relation that we were looking for, and
' z+z/(k) ’ ' expresseddLg(k,z) in terms of known quantities, at least

once we have defined the interpolating functigfk). Before
) doing this, let us see how the closure relation in E314)
CSEXRK,7) = k"Doxs(k) (3.9 looks like in terms ofCg(k,z). For this, substitute Eq3.14)
5 ’ z+29(k) ' in Eq. (2.4), with the following result
Cs(k,2)=C3¥k,2) +[AL* (k) — CE*k, ) IN (K, 2),

where z,(K)=x Y(k)L°(k) and z9(k)=yxs(K)LYK). (315

Clearly, [z (k)] * and[z{®(k)]~* are the relaxation times
of the memory functionsCS*Rk,z) and C3F*f(k,z), re-  with
spectively.
Thus, we have two important exact limits for the memory CgEXP(k,z)a(k)

function C4(k,2z), namely, A(k,2) A0 (K)+[CS K 2)— AL (K) (k)

lim Cg(k,z)=AZ* (k) (3.10 (3.19
k=0 The function\ (k,z), for fixed z, is just another interpolating
function between the two exact limits f@@g(k,z) in Egs.
and (3.10 and(3.11) since, from its definition in Eq(3.16), we
can see that Iirp_}o)\(k,z)zl and lim_ _A(k,z)=0.

lim C4(k,z)=C3F*f(k,2). (3.11)

Koo

In this manner, at this point we have all the elements that
we need to construct the self-consistent scheme~{d;t)
_ ) andFg(k,t). This is summarized by the exact results in Egs.
Our proposal of a closure relation fQxs(k,z), unlike our (2 1)_(2.4), the Vineyard-like approximation in terms of
illustrative eXample in Eq(35), incorporates the smalll- AL(k,Z) andALS(k’Z) in Eq (25), and the closure relation
limit in_ Eq. (_3.1_0)_ only as a limiting condition, but in the j, Eq. (3.14, with AZ* (k) given by Eq.(3.4). The only
opposite limit, it incorporates the exact large wave vectoyissing element of this scheme is the interpolating function

condition in Eq.(3.11). Conceptually, we do this not at the k), for which we arbitrarily choose the following simple
level of Cg(k,z), but at the level of the higher-order memory fynctional form:

function AL ¢(k,z) [by means of the expression in E§.4)],
and require the corresponding limits at the level of

1
ALg(k,z). Thus, from Eq.(2.4), we see that the limiting “(k):ﬁ' (3.17
behavior ofCg(k,z) in Egs.(3.10 and(3.11), translate into 1+ —
the following limiting conditions forAL g(k,z): ke
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The parametekc is the wave-vector scale, with respect to that it is quantitatively the most accurate one, according to
which k is small or large, and the parameterdetermines the numerical tests that we have performed.

how abruptlya(k) goes from 1 to zero dsincreases beyond ~ However, a formally simpler scheme happens to be
ke. For k<ke and fork>ke, Cq(k,2) is better approxi- equally accurate and fundamental, batposteriorj looks

Lo TSN like the most obvious proposal for an “economic” self-
mated by the corresponding limit in Eq8.10 and(3.1D,  c4pgistent theory of colloid dynamics. This corresponds to

respectively. One would expect the¢ must be of the order  employing the = Vineyard-like approximation involving
of the position of the main peak of the static structure factorC(k,z) andCg(k,z) in Eq. (2.6), and the closure relation for
S(k). The fine tuning in the actual determination of the pa-Cg(k,z) in Eq. (3.15, but with an additional simplification.
rametersk; and v will be done in the following section. This consists of assuming thrtk,z) in this equation is not
The scheme just explained, which involvas (k,z) and  given by Eq(3.16), but that\ (k,2) is itself approximated by

ALg(k,2), together with the interpolating device involving @n interpolating function of the type in E(.17). This sim-

the functiona(k), is the result of a series of basic statistical pledr szeg-cfcms::stint schgn';e ﬁan be ?ummar:czgdkby(EqE()j.

mechanical considerations and assumptions. Similar consi ind (2.3) for F(k,2) an s( .’Z) In terms o ( .’Z) and.
s(k,z), together with the Vineyard-like approximation in

erations could lead to several variants of this scheme, de-= c

pending on which versiof24] of the Vineyard-like approxi- eEl?t \(,at?]) ')\?Esz)thneof Igoi\S/LeJLe br; Ifét(l;_)(g_llnefgﬁ'?e;g%é% 1bay’ a
mation is employed, and which closure relation one adoptssimple interpolating function of the type af(k) in Eq.
The scheme just explained is indeed the most fundamenta8.17. For reference, let us summarize here the resulting
(in the sense that it involves the highest-order memory funcself-consistent scheme for colloid dynamics that derive from
tionsL(k,z) andLg(k,z) considered hejeWe can also say the conditions just described,

S(k)
F(k,z)= , 3.1
(2 k?DoS (k) (318
Z+ CSEXP(k Z)
14 CSEXAK,2) +| —ce5—— A L* (2) — CSEXRk,2) [N (K
(k,2) ST (2) (k,2) |\ (K)
Fs(k,2) ! (3.19
2)= , .
° . k?D,
z
1+C5¥ Mk, 2) +[A* (20— CSFM Tk, 2) I (K)
|
with AZ*(z) being the Laplace transform of of the dynamic properties of the system. The only elements
5 not yet determined with complete precision are the param-
[kzh(k)] eterske and v of the interpolating functiom (k). In the

Dgn
* =
AT (277)3f dk1+ nh(k) FlkOFs(k,t) following section we address the problem of determirligg

(3.20 and v, by means of the actual application of this self-
consistent scheme to a simple concrete model system for
which Brownian dynamics simulations are available. There
we also illustrate the general level of quantitative accuracy of

. (3.21)  this new theory of colloid dynamics.

and with the interpolating functioR(k) given by

AK) =
1+

K
ke

In these equations, the functionQSEXP(k,z) and IV. SPECIFIC NUMERICAL APPLICATION

C3F*Ak,z) are given by Eqs(3.8) and(3.9) in terms of the . _ o

static properties defined in the Appendix. Thus, for a given N this section we present an application of the self-
Brownian fluid in the absence of hydrodynamic interactions consistent theory just described to the calculation of the col-
one can input in this scheme the free-diffusion coeffic@pt  lective dynamics of a specific system, namely, a two-
along with the pair potential(r) of the direct interactions. dimensional repulsive Yukawa Brownian fluid. For this
After calculating the static properties of the Appendix by system, we generate Brownian dynamics simulations for
statistical thermodynamic methods, the solution of EqgsF(k,t), with which we compare the predictions of our
(3.18—(3.20 above will provide a fully self-consistent de- theory. We first compare the results of the self-consistent
scription scheme for a fixed state, to determine the optimum choice of
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the parameters andkc, which, from there on, will be kept the virtue of reducing the need of static inputs of our theory
fixed. We then compare the theoretical calculations with théo the previous determination of only(r) which, as said
computer simulation data for other states of the system. Ouabove, is provided here by the computer simulations. Fol-
conclusion is that the self-consistent theory exhibits a highowing this procedure, we then go back to our self-consistent
degree of quantitative accuracy for all the states considereslystem of equations, Eq&8.18—(3.20, from which we now
(including highly interacting systemsand all the regimes determine simultaneousk(k,t), Fg(k,t), andAZ*(t). Al-
accessible to our computer simulations. The model systerthough the numerical solution of this nonlinear system of

considered is defined by the pair potential equations may be lengthy and is not trivial, it is in fact rather
straightforward.
g Arle=1) - We started by solving Eq$3.18—(3.20 for a variety of
Bu(r)= K rle r ‘T, 4.1) interpolating functions within the family in Eq3.21). The

corresponding solutions fd(k,t) are then compared with
the exact(computer simulatedvalues for this property. We
did this by varying the parameteisand k. at an arbitrary
fixed state, and for a fixed time, representative of the inter-
mediate time regime. After doing this for various times and
fixed states, it emerged that the optimum value of the param-
etersv and ke are v=2 and kc=K,n, wherek,, is the
position of the first minimum of the static structure factor. In
andz, namely, K=500 andz=0.15, and vary the reduced Fig 1 e illustrate the comparisons involved in this process,
number density’* =no?, wheren is the number of particles for a highly interacting systerm* =0.015, at an intermedi-

per unit area. There is no special reason for choosing thig;e timet/t,=>5.0. In Fig. 1a) we present the results of our
model system and these fixed valueskoéind z, other than theory for F(k,t) as a function ofk, for various values of

the fact that this system and conditions have been studieg(zz 6,10) keepindc fixed atkco =k, .c=1.11, whereas
rather extensively elsewhef®,24,26,27. Notice that for the ;. Fig’ 1,(b) we keep fcixed/:2 aﬁd Vafwc [ke= k’< K
. il ’ max»

valuesK =500 andz=0.15, the Yukawa repulsion prevents k. K. wherek —0.81 is the positicn of the main aeak
the particles from probing hard-core contact. Thus, the Iengt&/m'“’ = max =4 p p

o0, r<o

where o is the hard-core diameter of the particlé&sjs the
pair interaction energy at contact in unitsigfT, andzis the
inverse of the screening lengtm units of o~ ). The basic
dynamic parameter is the diffusion coefficiddg. We shall
only consider the following fixed values of the parametérs

f S(k), k-o=0.73 is a wave vector slightly belo , at
scales does not have an important physical significance, an (K), ko ghtly belolna,

X ! ‘ : hich S(k)~1, andk- o= 1.6 is the location of the second
will only be employed as an arbitrary unit length to def'nemaximum 0fS(k) . From the comparison with the computer
dimensionless quantities such a%, or the dimensionless

: . : e simulation results, represented by the symbols, it is clear that
distancer/o and dlmens!onless wave vectbo. Similarly, o optimum choice of the parametersndkc is indeedw

we d_o not ”e?‘?' to assign a ngmencal value Fo the free—:2 andkc =Kk, - At this point, we adhere to this prescrip-
diffusion coefficientDo, since: this paramete; will be ab- ion for the definition of these parameters. Thus, from now
sorbed in the definition of the time scaig=o“/Dg, which on, there is no input of the theory other thafr) andg(r).

will be employed to define the dimensionless time variable ot 5 now illustrate its application to the same system, but
t/ty. The Brownian dynamics computer simulation eXPeri- ot other time and/or concentration regimes

ments have been described elsewHed27. Here we shall In Fig. 2 we present the theoretical results fofk,t)

employ the computer simulation results for the radial diStri'(solid lineg as applied to the same system but at conditions
bution functiong(r), as the fundamental static structural in- representative of the regimes of intermediatef £ 0.009)

put of our theory. This allows us to avoid at this stage one, 4 strong 6* =0.015) coupling. The results in Fig (e

passible source of uncertainty, such as that |.ntroduced by trﬁﬂustrate the behavior of these two conditions at relatively
use of some integral equation 'apprOX|mat|on .to calculat hort times, where still the SEXP approximation provides a
g(r) from u(r). From the exacti.e., computer simulated .4 representation of the dynamics of the system. For ref-

g(r) we calculate the Fourier transforfi(k) of the total  gronce “in Figs. @) and 2b), the SEXP resuits, obtained
correlation functionh(r)=g(r) —1, and the static structure ¢, Eq. (3.18 with A(k)=0, are also includeddashed

factor S(k) =1+nh(k). These quantities enter explicitly in jineq Figure 2b) presents a similar comparison as in Fig.
the self-consistent scheme summarized by E&‘%l&_ 2(a), but at a longer time, representative of the intermediate-
(3'20)’lenx\F,>Vh|Ch other quantities appear, namety, (K2) " time regime. The general conclusion drawn from this com-
andCg=""(k,2). These are written in Eq¢3.8 and(3.9)in  harison is, on the one hand, that our self-consistent theory
terms of the static propertiegk), xs(k), L°(k), andLg(k)  provides quite an accurate representation of the time and
which, in their turn, are defined in the Appendikgs.(A6),  wave-vector dependence of the intermediate scattering func-
(A8), (A7), and(A9), respectively in terms ofg(r) and of  tion F(k,t) at the short- and intermediate-time regimes of
the three-particle distribution functiog®)(r,r’). The latter  our system under conditions of weak, intermediate, and
only appears in the last term &°(k) in Eq. (A7) and of  strong couplings. Figures(® and 2b) also illustrate the
LY(k) in Eq. (A9). These are the only terms in which we improvement introduced by our theory over the much sim-
introduce a simplifying approximation, based on the use obler, SEXP approximation. The latter, does provide a simple
Kirkwood superposition approximation. As discussed in Refand accurate representationfofk,t) at low concentrations
[26], this simple scheme to evaluatd(k) and Lg(k) turns  and short time$16,27, but it fails for moderately to highly
out to be quite effective. In the present context, it also hasorrelated systems at intermediate and long times. In the de-
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FIG. 1. Intermediate scattering functiét(k,t) as a function of ko

the reduced wave vectdeo, for the Yukawa systeniEq. (4.1)]

with K=500, z=0.15 forn* =0.015 att/t,=5.0.(a) Comparisons FIG. 2. Intermediate scattering functidn(k,t) for the same

using the interpolating functions(k) [Eq. (3.21)] with ko=Kp;,, ~ System as in Fig. 1, but witm*=0.009 (left) and n*=0.015

and v=2 (solid line), v=6 (dashed lingand »=10 (dotted ling. (right), _(a) for t/t0=0.8_3(b) for t/ty="5.0. S_0|ld lines represent our

(b) Comparisons using the interpolating functions witk2 and  theoretical results with parameters with=2 and K.=Kpn,

k.=k. (dotted ling, k.=Kmay (dashed ling k.= Ky, (solid line) whereas the Brownian dynamics simulations are represented by the

andk.=k-. (dot-dashed ling Open circles represent the Brownian Symbols. The results of the single exponentBEXP) approxima-

dynamics(BD) results. tion are also includeddashed lines

velopment of our present theory, this simple approximatiorof quantitative accuracy of our theory at those relatively long
served as an important conceptual reference, upon which wames is again evident from this comparison. For reference,
elaborated the correction that allowed the proposal of theve mention that the SEXPot shown in this figurg only
fully self-consistent scheme in Eq$3.18-(3.20. Figure reproduces qualitatively the time evolution of the main peak
2(b) illustrates the extent to which this correction is impor- of F(k,t), but predicts a much faster decay of its amplitude
tant at progressively longer times. compared to the simulation results and to the results of our
To continue with the illustration of the results of our self- theory, which in Fig. 3 are virtually indistinguishable from
consistent theory for the same model system, in Fig. 3 weach other.
present the corresponding results fdik,t) for n* =0.009 at Finally, in Fig. 4 we illustrate the behavior of the inter-
the longest time we considered in the computer simulationmediate scattering functions under certain limiting condi-
For comparison, Fig. 3 includeB(k,t) at t/t,=0 (i.e., tions. For this, we plot the theoretical results for
S(k)), t/t,=13.85, andt/t,=24.93. Clearly, the high level —[S(k)/k?]In[F(k,t)/S(K)] and —(1/k?)In[Fgkt)] as a func-
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35 ate scattering function &. o=0.02. On the other hand, for
1 o all wave vectorsF(k,t) andFg(k,t) are expected to decay
30 ® exponentially for asymptotically long times, with decay con-
°° stantsk?D S~ *(k)/[1+ C(k,z=0)] and k?D,/[1+ C(k,z
25 W ° =0)], respectively. Although Fig. 4 only exhibits results for
. a limited time window, this long-time behavior seems to be
20- ° . already established. Other important features are also appar-

ent in Fig. 4. Thus, for wave vectors very large compared to
kmax,» We expect that the collective and the self-intermediate
scattering functions exhibit the same time dependence. Here
we illustrate this with the results corresponding koo
=1.10. Although this value is not much larger thiap,y, it

was chosen such that the static structure factor is unity. Fi-
nally, let us notice that at short times, all the data for
—(1K&3)In[F4k,t)] converge to a single curve. This indicates
that at short timeg$-g(k,t) is Gaussian to a very good ap-
proximation. At longer times, however, there is a noticeable
dependence of (1/k?)In[Fgk)] on the wave vector. This
concludes the discussion of the application of our self-
FIG. 3. Theoretical predictionsolid lineg for F(k,t) with pa-  consistent theory to the specific system employed here with

()

rametersyv=2 andk.=K,,, for a system withn* =0.009 andt illustrative purpose.
=0, t/ty=13.85, and/t,=24.93. The open circles represents BD
results. V. SUMMARY AND CONCLUSIONS

tion of t/t, for a system with intermediate concentration In this paper we have presented our proposal for a self-
(n*=0.009), and for values of the wave-vector representaconsistent theory of the dynamic properties of a colloidal
tive of three regimesk<Kpma K~Kmax and k>kp. [at ~ SUSPensionin t_he absence of hydrqdynan_‘nc interactions. This
which S(k)~ 1]. For this systemk,,,c=0.63 is the position theory was build upon four basic ingredienta) the exact

of the main peak ofS(k), and we seleck_o=0.02 and results forF(k,t) and Fg(k,t) in terms of a hierarchy of
k-o=1.10 as values of the wave vector much less than, ang’€mory functions, as derived from the application of the
much larger thark,, respectively. Notice first that at short GLE formalism; (b) the proposal of Vineyard-like connec-
times all the curves in Fig. 4 become indistinguishable fromfions betweerF (k,t) and Fs(k,t) through their respective
each other and from the free-diffusion curtiee straight line ~Memory functions(c) an approximate expression for one of
with unit slope, see the ingefThis reflects the exact short- thesé memory functions in terms of the time-dependent fric-
time limit built in our theory. Notice also another important tion function A¢(t); and(d) a closure relation foA{(t) in

limit: for all times, F(k,t) should also decay aB(k,t) terms ofF(k,t)and Fg(k,t), also derived within the GLE

= S(k)exd —k?Dgt/S(K)] in the limit of small wave vectors. formalism. As a result, we arrived at the self-consistent sys-
This is illustrated by the results for the collective intermedi-t€m of equations summarized in E¢8.18—(3.20, and in-
volving only F(k,t), Fg(k,t), andA{(t). The other quanti-
ties entering in these equations are static properties that can

,_25 | be written in terms of the radial distribution functiaqr)
3 and of the three-particle distribution functig®®(r,r’) (al-
Q 20 e = though, in practice, as explained in the preceding section and
< | < in Ref. [26], only g(r) is required in their approximate
I, 197 i "-g- evaluation. The only element left undetermined in our self-
N.g. Ni consistent system of equations is the interpolating function
;\‘\ 107 Le e [ A (K) in Egs.(3.18 and(3.19. When\(k)=0, we recover
5 ] o 0 s ] the SEXP approximation. Here, however, we explored a fam-
8T -~ PR S i ily of interpolating functions\ (k) described by Eq(3.21).
] {,6,:.3?—7&"'” """ i In the absence of a more fundamental principle to determine
0 : y 1-0 y 2-0 y 3-0 T o N(K), we proceeded to fix the parametersand k: in Eq.
th (3.21) by means of the calibration of our theory by compar-

ing its results, for various values of and ke, with the

FIG. 4. Theoretical predictions for the intermediate scattering’®Sults of a Brownian dynamics computer simulation experi-
function F(k,t)/S(K) (lines) andFg(k,t) (symbol$ againstt/t, for ~ ment. For this we choose a simple model system, namely, a
the system as in Fig. 3, and three different valueskef k.o  two-dimensional Brownian repulsive Yukawa fluid. This al-
=0.02 (solid line and open squarek,,c=0.63 (dashed line and lowed us to fix the only element of our self-consistent
open circley andk.o=1.1 (dot-dashed line and open triangles scheme that was not determined on the basis of physically
The free-diffusion regime is also includédotted ling. reasonable arguments, thus leading to our final choie@
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and ke =Kkmin [wherekmin is the location of the first mini-  §j,(k,t), and the kinetic and configurational components of
mum of S(k)]. In this manner, our self-consistent theory, the stress tensodoy(k,t) and Soy(k,t), respectively. In
represented by Eq$3.18—(3.20 with this choice ofr and  that paper, the microscopic definition of each of these dy-
ke, is now a closed system of equations, which only needsiamic variables was given, along with their static correlation
the pair potential and the radial distribution function as thefunctions. Here we focus our attention on the configurational
only specific static inputs. component of the stress tensor, defined as

In the preceding section we illustrated the quantitative
predictive power of our theory by comparing its results with keT
the simulation data for the same model system. As illustrated Say(k,t)=do(,(k,t) +V on(k,t), (A1)
in Figs. 2 and 3 above, this theory is capable of describing
the dynamic properties contained F{k,t) in a wide range
of conditions, involving strongly correlated systems, at thewhere
longest times available from our computer simulations.

The presentation of our theory, and its concrete applica- N
tion that served as an illustration, now leave open several / - u u ik-ri(t) _
important questions. Thus, one would like to know if the ookt 2|\/|\/N .21 ,E;&. ” Pilry)e op
choice of the parameters=2 and k=K, happen to be (A2)
specific for the present system, or if they continue to be a
good selection for other systems. We can adv4a8gthat at
least for the three-dimensional version of the present system,
this choice ofk: continues to be as good a choice as for the
system discussed here, but the optimum value of the param- _ o du(ry) e
etersv is v=6. At present, however, we cannot identify a Pi(ri) =1 drij  ker(t)
meaningful fundamental reason for this fact, neither a com-
pelling reason for a different choice of the interpolating func-
tion A (K).

As already stressed above, our theory seems to be high
accurate in its description of the dynamics of strongly corre-
lated systems at long times. Hence, one would expect the x(K)=(6ay(k,0)60y(—k,0)), (A4)
same theory to provide a qualitatively accurate description of
the phenomenology of the ideal glass transiti@®] in o can write
strongly correlated systems. As we shall discuss separately
[29], this also turns out to be the case. Other aspects on )
which we shall report shortly, concern the extension of this ()= (80, (K,0) 50, — k,0)) — (ks_T) (8n(k,0)
theory to colloidal mixtures and to systems with strong hy- Ut v ’
drodynamic interactions. In this paper we only wanted to
stress the main physical ideas upon which these develop-
ments are being built.

Ik rij([)_l

(A3)

whereu(r) is the interparticle effective pair potential. Since
I)fl(k) is defined as

X on(—k,0)). (AS5)

Using Eqgs.(A2) and(A3) for the components obo(k,t),
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(AB)

On the other hand, as it was pointed out in Refl],
LO(k) is related to the “Markovian” contribution of the con-

In this appendix we summarize the essential expressionfiggurational memory functioh ;,(k,t). In that reference, the
for the static propertieg(k), L°(k),x5(k), andL2(k) asso- precise definition oL°(k) was establishefisee Eqs(4.24)
ciated withF(k,z) andFg(k2) [see Eqs(2.1)—-(2.4]. As it  and(4.29 of Ref.[21], whereL (k) is denoted by, ,(k)],
was explained in Ref{22], an adequate description in the and arguments were given to arrive at the following expres-
diffusive regime can be done in terms of the fluctuations insion for this quantity in terms of the two- and three-particle
the local concentrationsn(k,t), the longitudinal current distribution functiong(r) andg®(r,r’):

APPENDIX: STATIC PROPERTIES
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2

52
MZﬂZLO(k):nDOJ d3rg(r) '8 r )[l+2 coskz]— {Id:*’rg(r) Bu(r)(l coskz)
2
0 jd3 ( )SI kz + fd3rg(r)(1 coskz) ﬁ;(r)
2 ’ ’
+D02 fd3rd3r’g(r,r’){1—2coskz+cos{k(z—z’)]} VBU) || IV Bulr )]. (A7)
9z 9z’
In a similar way, one can derive the corresponding properties for self-diffugiGt(k) and Lg(k), with the following
results[22]:
(kgT/M)? J*Bu(r)
O(ky=— "~
K I=—73 fdr (=3 (A8)
and
2 2
k2M2B2LY(k)=k?D, njdrg(r)&uz(r) —Dgn? strg(r) A ( ) +2Donf d3rg(r)[ vBu(n[*
iz Jz
o[ 3z, oV pu(r)|| oV Bu(r’)
+Dgn fd rd°r'g(r,r’) 0 o . (A9)

In the equations above(r) is the effective interaction pair potential between colloidal particles. Finally, we should repeat that
in this paper we have systematically dropped the subindék ™ employed in Ref.[21], wherex(k), x®®(k), L°(k), and
S(k) are denoted, respectively, by (K), qu(k) Lyu(k), andL (k)
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